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Abstract 

Fretting is a structural damage mechanism arising between two nominally clamped 
surfaces subjected to an oscillatory loading. A critical location for fretting in- 
duced darnage has been identified at the blade/disk and blade/damper interfaces 
of gas turbine engine turbomachinery and space propulsion components. The high- 
temperature, high-frequency loading environment seen by these components lead 
to severe stress gradients at the edge-of-contact that could potentially foster crack 
growth leading to component failure. These contact stresses drive crack nucleatioii in 
fretting and are very sensitive to the geometry of the contacting bodies, the contact 
loads, materials, temperature, and contact surface tribology (friction). Recently, a 
high-frequency, high-temperature load frame has been designed for experimentally 
investigating fretting damage of single crystal nickel materials employed in aircraft 
and spacecraft turbomachinery. A modeling method for characterizing the fretting 
stresses of the spherical fretting contact stress behavior in this experiment is de- 
veloped and described. The calculated fretting stresses for a series of experiments 
are then correlated to the observed fretting damage. Results show that knowledge 
of the normal stresses and resolved shear stresses on each crystal plane can aid in 
predicting crack locations and orientations. 
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Fretting is a structural damage mechanism arising from a combination of wear, 
corrosion, and fatigue between two nominally clamped surfaces subjected to 
an oscillatory loading. Although this phenomenon plagues machinery of many 
kinds, the focus of this work is on critical aerospace components and materials 
that are continually driven to the limit of their load capacities for light weight 
design. Vibrations inherent to engine operation, high-frequency blade response 
due to  unsteady aeroelastic drivers, and elevated temperatures aggravate fret- 
ting at the blade/disk and blade/damper interface of such high performance 
tiirbomachinery components. As a result , fretting in these components has 
become a focus of current research [1,2J. 

Despite the complexity of the fretting problem, there has been some success 
in predicting the fretting fatigue life using mechanics or stress based models. 
These models are formulated from information about the contact pressure, 
external load (or bulk load), coefficient of friction, and tangential load (or 
relative slip). The fact that these models show success for a variety of test- 
ing conditions suggests that some parameters may have secondary effects that 
could collapse into or be a part of the effects of a smaller set of primary vari- 
ables [3]. A well defined, well characterized experimental setup in fretting could 
then be defined as one that allows characterization of these primary variables. 
In response to a recent need to investigate fretting behavior of turbine engine 
components under engine type loading and temperatures, a high-frequency, 
high-temperature fretting rig capable of investigating fretting behavior of ad- 
vanced alloys has been constructed [4]. The remainder of this work serves to 
present the model developments used in analyzing the spherical, dissimilar, 
anisotropic material contact tests performed on this designed rig [ 5 ] .  

i hfechmics cf Fretting 

In plain fatigue research, study of the component damage due to  fatigue is 
generally broken up into three phases: (1) a crack initiation phase, (2) a pe- 
riod of early or short crack growth, (3) and finally a long crack propagation 
phase that is generally characterized by a Paris-type equation. In fretting, a 
condition of partial slip defined by slip (relative motion) and stick (no relative 
motion) near the contact interface develops. Per St Venant's principle, the 
stress state remote from the contact will be affected only slightly. As a result, 
the stick/slip interfacial mechanics result in a near-surface, multi-axial state of 
stress with severe stress gradients that significantly influence crack initiation 
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and early crack growth. It is in the early stages of crack formation and growth 
behavior that fretting fatigue is distinguished from plain fatigue. Once the 
crack grows beyond the influence of the contact stresses, crack growth can be 
modeled with plain fatigue methods. Conversely, by removing the bulk stress 
and looking purely at stresses arising from contact, it is possible to investigate 
the nucleation and early stages of crack development due to fretting (or contact 
fatigue) alone. Mechanics based models of fretting contact involve solving the 
frictional contact problem rigorously and as a function of time. A full solution 
of these problems involves attaining the relative displacement (stick/slip dis- 
tribution) at the contact with a subsequent solution of the near-surl'rice stress 
and strain fields which drive fretting crack formation. To find a link between 
the cyclic contact stresses, strains and fretting crack nucleation, it is necessary 
to  first address this frictional contact problem for the case being investigated; 
hence, emphasis here will be given to three-dimensional, dissimilar, anisotropic 
material contact model developments. For the interested reader, an excellent 
review of fretting fatigue historically was provided by Waterhouse [6] with 
further details about the underlying mechanics of fretting fatigue having been 
reviewed by Szolwinski and Farris [7] and Hills and Nowell [8]. Further infor- 
mation about fretting and its affect on the structural integrity of in service 
components have been reviewed by Farris et al. [9]. 

2 Finite Element Modeling 

Despite recent progress cited in the literature above, the limitations in general- 
ity of these solutions have pragmatically required the use of numerical solution 
procedures like the finite element method (FEM) or boundary element method 
(REM) when solving three-dimensional, dissimilar, anisotropic contact prob- 
lems. Although computational power continues to increase at record pace, 
any stress analyst employing a finite element (FE) code for contact stress 
solutions must be cognizant of the extremely fine mesh required for resolv- 
ing edge-of-contact stress peaks and stress gradients associated with fretting. 
The computational demand and convergence difficulties increase further when 
solving three-dimensional problems. It therefore becomes important to iden- 
tify the FE mesh resolution required t o  capture the edge-of-contact stresses 
that drive fretting crack nucleation. This necessarily requires comparison of 
simplified FE model results with analytical results to  investigate the required 
degree of mesh resolution. 

Recent investigations have exploited a FE method called submodeling to al- 
leviate the computational expense associated with solving a frictional contact 
problem of an entire in-service structural component [lo]. In submodeling, 
a smaller, adequately refined mesh (submodel) local to the contact can be 
used to get converged stresses in the area of interest by applying displacement 
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boundary conditions interpolated from a larger global model of the contact- 
ing component. The submodeling process as applied to the frictional contact 
problem in dovetail attachments of turbomachinery has recently been inves- 
tigated for two- [ll] and three-dimensions [12]. This method exploits the fact 
that stresses and displacements away from the edge-of-contact region converge 
much more quickly. 

The current modeling efforts employ this submodeling technique for a spher- 
ical contact geometry. In this process, a global (coarse) model of the fretting 
pad and specimen capable of modeling the experimentally generaid load ari! 
boundary conditions is first constructed. The global model mesh is refined 
until displacement convergence occurs at the boundary location of the smaller 
submodel to be analyzed. The convergence criterion employed assumes con- 
vergence when all the nodes at the submodel boundary for the fine global 
model had converged displacements to within specified percentage of the dis- 
placement value found for the coarse global model solution. 

A similar, isotropic material contact was chosen to investigate the ability 
of the submodeling approach to capture the contact tractions for the three- 
dimensional Mindlin problem. Comparison of the FE results with a simplified 
theoretical result will also give insight into the level of mesh refinement re- 
quired for capturing the edge-of-contact stress peaks and sharp stress gradients 
inherent to the fretting problem. Each of the FE global and submodels em- 
ployed were generated in I-DEAS, a commercially available CAD/CAM/CAE 
software, and were solved in ABAQUS, a commercially available FE package, 
each released to Purdue University on an academic license. 

.2.1 Global Model 

Figure 1 shows the global FE model geometry, loads, and constraints used in 
numerically solving the three-dimensional contact problem. The upper spher- 
ical indentor represents the contact pad which contacts the lower specimen 
model at a flat contact interface. The boundary conditions chosen for anal- 
ysis of the Mindlin loading case required specifying vertical and horizontal 
constraints to prevent rigid body rotation or translation of the pad (see Fig- 
ure 1). To best represent the behavior of the infinite half-space assumed in 
the Mindlin loading condition, a surrounding set of three-dimensional infi- 
nite elements were added around an appropriately fine hemisphere of finite 
elements comprising the specimen model. A very light set of springs in each 
translational direction was also included in both the pad and specimen mod- 
els to ensure nonsingular matrices when applying the initial loading step. To 
investigate the partial slip and corresponding shear traction generated at the 
contact surface due to Mindlin loading, the global model was first subjected 

4 



P Vertical Constraints 

Fig. 1. A figure showing the global finite element model with appropriately applied 
loads and constraints for solving the three-dimensional contact problem. 

t o  a normal load, P, in step 1 followed by the tangential load, Q, in subsequent 
step 2. 

2.2 Submodel Process 

If stresses are desired within one contact diameter from the edge-of-contact, 
the extent of the finest submodel is set by knowledge of the dimensions of the 
contact patch. Classical Hertzian theory can be used to  estimate the contact 
patch diameter for a spherical contact. With the geometric size of the finest 
submodel and global model now defined, an appropriate number of interme- 
diate submodels can be chosen t o  ensure convergence. Since the displacement 
boundary conditions for the submodel are interpolated from the converged re- 
sults of the global model, interpolation errors can arise from an inadequately 
EEC gicbd model. This fact must be taken into account when choosing the 
number of subsequent submodels to  employ in the analysis. 

Figure 2 highlights the submodeling scheme employed for this analysis. As il- 
lustrated in panel l of Figure 2, the first step in the submodel process is to solve 
the global model subjected to the experimentally determined loads and bound- 
ary conditions. Increasingly fine global models must be constructed and solved 
until the nodes at the boundary of the submodel in panel 2 have achieved 
convergence by meeting the chosen convergence criteria. In this analysis, con- 
vergence was assumed to have occurred when the nodes on the submodel 
boundary had converged to within 2%. An intermediate submodel (panel 2) is 
then solved by applying the appropriately interpolated displacement bound- 
ary conditions as obtained from the converged global model results in panel 1. 
Again, increasingly fine intermediate models must be run with the same con- 
verged displacement boundary conditions until convergence is maintained at 
the boundary for the next submodel in panel 3. In general, this process is re- 
peated until the final submodel geometry is reached. Note that two successive 
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Traction Model 

Fig. 2. Sequential depiction of the submodeling process to be employed in the 
three-dimensional contact analysis. 

submodels (panel 2 and 3) were used to reach the final submodel extents. 

Successively fine FE models for the traction model in panel 3 can now be run 
until convergence in tractions is obtained. Since a full solution of the nonlinear 
contact problem requires significant computational expense, the converged 
normal and shear tractions found from the traction model in panel 3 can then 
be appropriately interpolated and applied to a final stress submodel of the 
specimen for contact stress solution. Note that the final stress model (panel 4) 
is a hemisphere of elements where the spherical surface is subjected to fixed 
boundary conditions and the flat face is subjected to the converged tractions 
found from the traction mode! (pane! 3). The radius of the hemisphere in the 
stress model was chosen to be large enough to adequately model a contact 
half space. To aid in stress convergence, the stress model (panel 4 in Figure 2) 
was built of quadratic brick elements instead of the linear brick elements used 
t o  obtain convergence in the previous submodels. 

To appropriately apply tractions to the stress model, the converged contact 
tractions obtained by the traction model (panel 3 in Figure 2) first had to 
be interpolated to obtain traction values at corresponding nodes in the stress 
model (panel 4 in Figure 2). Details of the mesh geometry, loads, and bound- 
ary conditions of the stress model can be seen in Figure 3. After interpolating, 
the tractions at the nodes of the stress model need to be appropriately in- 
tegrated and applied as equivalent nodal loads. Since the stress model was 
constructed of 20 noded quadratic brick elements, calculation of nodal loads 
requires appropriate integration of the tractions applied to the stress model 
contact surface comprised of 8 noded quadratic element surfaces. Successive 
solution of increasingly fine stress models were then performed until stress con- 
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Fixed boundary conditions 
on spherical face 

Fig. 3. Schematic of stress model mesh geometry, applied loads, and boundary 
conditions used in fretting subsurface calculation. 

7 



Parameter Value Unit 

Spherical Radius (R) 1 6.35 (0.25) 

Normal load (P) I 667 (150) 

2.3 Similar Contact Example 

mm (in) 

Newtons (lbs) 

To investigate the mesh resolution required to  obtain a converged traction 
solution, a similar, isotropic material contact analysis was first run. The global 
model geometry was defined with a spherical radius, R, and was subjected to 
a normal, P, and tangential load, Q, in the x-direction. Material properties 
reflective of an aircraft grade aluminum alloy (AL-2024) were used. A summary 
of the geometry, loading, and material properties used in this analysis can be 
seen in Table 1. A coefficient of friction, p = 0.3, was also assumed. 

~ 

Tangential load (Q) 89.0 (20) Newtons (lbs) 

Youngs Modulus (E) 68.9 (10~10~) MPa (psi) 

Poissons Ratio (v) 0.33 

2 m ;  

Fig. 4. Pressure traction solution as obtained from the FE submodeling process 
(circles) as compared with the Mindlin solution (contour surface). 

The mesh resolution for each of the models were refined till the internal bound- 
ary location for the next submodel had converged displacements to less than 
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Fig. 5 .  Shear traction solution as obtained from the FE submodeling process (circles) 
as compared with the Mindlin solution (contour surface). 

2%. The submodel process was employed and resulted in the normal and shear 
tractions as seen in Figures 4 and 5, respectively. In these contour plots, the 
circles represent the solution obtained from the submodel. analysis and the sur- 
face plot represent the analytical solution as obtained from the axisymmetric 
Mindlin solution. Expressions for calculation of the Mindlin subsurface stress 
solution are presented in Hills, Nowell, and Sackfield (1993) . 

It should also be noted that though the Mindlin solution represents a three- 
dimensional solution, it has been shown to only be exact on the plane of 
symmetry (y=O) for contacting materials exhibiting no Poisson7s effect (v = 
0) [14]. This Poisson7s effect (Poisson's contraction) leads to  out-of-plane shear 
tractions, qg, that are not accounted for in the Mindlin solution which assumes 
that t he  shear traction only acts in the direction of the applied tangential load, 
Q. This effect is most exaggerated on a plane f45'  to  the sliding direction for 
the case of incompressible bodies (v= 0.5). For comparison with the Mindlin 
solution, only the shear tractions, qx, in the direction of the applied tangential 
load are reported. 

To highlight the pressure and shear behavior, the pressure and shear traction 
solutions are plotted at planar slices x=O (Figure 6) and y=O (Figure 7). Note 
that the pressure and shear compare well to the analytical solution at x=O. 
However, the shear traction deviates from the analytical for the planar slice 
at y=O. Investigating this deviation from the Mindlin solution further reveals 
that  the first step of loading, the application of the normal load, results in an 
axisymmetric slip and a resulting shear traction in the radial direction. This is 
reminiscent of the symmetric slip observed in two dimensional contact when a 
cylinder of one material is brought into contact with an infinite half-space of 
a different material [15]. Further investigation revealed that the Mindlin shear 
traction solution could be recovered by subtracting off the axisymmetric slip 
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y (mm) at x=O 

Fig. 6. A plot of (a) pressure, and (b) shear traction solutions for the x=O planar 
location. Note the circles represent the numerical FEM result and the solid line 
represents the analytical Mindlin result. 

x (mm) at y=O 

Fig. 7. A plot of (a) pressure, and (b) shear traction solutions for the y=O planar 
location. Note the circles represent the numerical FEM result and the solid line 
represents the analytical Mindlin result. 

developed in the first step of loading from the slip obtained in the second step 
of loading (see Figure 8). This effect is attributed to the fact that while the 
Mindlin solution assumes infinite half-spaces and infinite boundary conditions, 
finite element modeling requires that the boundary conditions and geometry of 
the pad be finite. This leads to  the discrepancy between the submodel results 
and the theoretical results. 

In order to appropriately apply the converged tractions to  the stress model, 
the tractions as obtained at each nodal position in the traction submodel were 
interpolated to corresponding nodes in the stress model and then integrated t o  
obtain equivalent nodal loads. These equivalent nodal loads were then applied 
to the corresponding contact nodes in the stress model. Using equation ?? 
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Fig. 8. Shear traction, q2, developed at y=z=O as found from the finite element 
solution for (a) the first step of loading (normal load only), and (b) the second 
step of loading (normal load and tangential load). Plot (c) shows that the Mindlin 
solution is recovered when the shear of the first step, (a), is subtracted from the 
shear of the second step, (b). Note the circles represent the numerical FEM result 
and the solid line represents the analytical Mindlin result. 

and the method described previously, the calculated equivalent nodal loads 
for the similar material contact case were applied to the contact face of the 
stress model seen in Figure 3. 

The converged tractions found from the traction model were applied to the 
stress model geometry with successively fine mesh resolutions. Figures 9,10,11,12,13, 
and 14 give the surface (z=O) stress solutions as obtained from the stress model 
solution. Note that each surface stress component as calculated by FEM 
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Fig. 9. A plot of subsurface stress ox2 at the surface (z=O) on the (a) x-axis (y=O), 
and (b) y-axis (x=O). Note the circles and triangles represent the numerical FEM 
results for the coarse and fine stress models, respectively. The solid line represents 
the analytical result. 

matches the theoretical value well except for shear stress rzx at  y=z=O (Fig- 
ure 13a) and shear stress T~~ at x=z=O (Figure 14b). These figures reflect 
difference in shear behavior observed in the converged shear tractions of the 
submodel analysis as illustrated in Figure 8. Hence, observing that the dif- 
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Fig. 10. A plot of subsurface stress oyy at the surface (z=O) on the (a) x-axis (y=O), 
and (b) y-axis (x=O). Note the circles and triangles represent the numerical FEM 
results for the coarse and fine stress models, respectively. The solid line represents 
the analytical result. 

Fig. 11. A plot of surface stress ozz at the surface (z=O) on the (a) x-axis (y=O), 
and (b) y-axis (x=O). Note the circles and triangles represent the numerical FEM 
results for the coarse and fine stress models, respectively. The solid line represents 
the analytical result. 
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Fig. 12. A plot of subsurface shear stress T~~ at the surface (z=O) on the (a) x-axis 
(y=O), and (b) y-axis (x=O). Note the circles and triangles represent the numeri- 
cal FEM results for the coarse and fine stress models, respectively. The solid line 
represents the analytical result. 

- A 

A 

Fig. 13. A plot of surface shear stress T,, at the surface (z=O) on the (a) x-axis (y=O), 
and (b) y-axis (x=O). Note the circles and triangles represent the numerical FEM 
results for the coarse and fine stress models, respectively. The solid line represents 
the analytical result. 
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Fig. 14. A plot of subsurface shear stress T~~ at the surface (z=O) on the (a) x-axis 
(y=G), and ? I )  y-axis (x=O). Note the circles and t.ris.ngles represent the numeri- 
cal FEM results for the coarse and fine stress models, respectively. The solid line 
represents the analytical result. 
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ference in shear behavior as compared to the Mindlin solution is a natural 
result of applying finite boundary conditions on the pad, the above result 
shows good agreement with potential theory. This suggests that the submodel 
/ stress model solution procedure developed here can accurately predict shear 
tractions and near-surface stresses for the contact problem. 

3 Extensinn to High-Temperature, - Anisotropic Contact 

The agreement of the similar contact solution presented provides confidence in 
ability of the submodeling approach to capture the tractions associated with 
three-dimensional contact. Extension of the similar contact submodeling ap- 
proach to elevated temperature, dissimilar, anisotropic contact simply involves 
defining appropriate material properties for the pad and specimen FE mod- 
els. Assuming that the experimental setup will maintain a relatively constant 
temperature through the duration of the experiment, material properties for 
the pad and specimen will be specified according to the chosen operational 
temperature. Since the pad is isotropic, standard isotropic material definition 
commands can be employed to define the constitutive relations. Defining the 
material properties for the specimen is more complicated due to the direc- 
tional dependent constitutive behavior inherent to single crystal (anisotropic) 
materials. However, with careful attention to material orientation with re- 
spect to the global coordinate system, most finite element packages allow the 
user to implement general, anisotropic constitutive relations with previously 
defined subroutines. These subroutines calculate the appropriate elastic con- 
stants with knowledge of the crystal material principal axis orientation with 
respect to the global axes of the finite element. 

4 Stress Analysis of Experiments 

With knowledge of the in-situ fretting contact loads, the devised stress model- 
ing technique can be employed to obtain the resulting fretting contact tractions 
and near-surface stresses. 

4.1 Modeling the Experimental Contact 

Due to the finite dimensions of the test specimen and pad, it was necessary 
to construct a new global model capable of accounting for the finite speci- 
men thickness. Figure 15 illustrates the mesh geometry, boundary conditions, 
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and applied loads used for the global model of the experimental fretting con- 
tact. The pin geometry and boundary conditions are identical to those used 

Horizontal Constraints 

rtical Constrain 

On Specimen Bottom and 
Outer Diameter 

Fig. 15. Illustration of the global model mesh geometry, applied loads, and boundary 
conditions used to model the fretting experimental rig. 

in the similar material contact analysis. The full specimen geometry is ac- 
counted for in efforts to capture the finite boundary effects whose effects were 
demonstrated previously. To model the specimen as it is held in the specimen 
fixture, the back face and outer diameter of the specimen were subjected to 
fixed boundary conditions. In order to model the fretting contact test, the 
global model and subsequent submodeling were now subjected to three load 
steps: 

LOAD STEP 1: Application of normai ioad, F ,  via a distributed pressure 
load on the top face of the contact pad. 
LOAD STEP 2: Application of maximum tangential load, Q = Q,,,, via 
concentrated loads in the X-direction as seen in Figure 15. 
LOAD STEP 3: Application of minimum tangential load, Q = Qmin, via 
concentrated loads in the negative X-direction as seen in Figure 15. 

The experiments displayed a near fully reversed tangential load (Qmin = 
-&,,, or R = -1); therefore, the analysis performed here will assume this 
behavior. By ensuring displacement convergence on the submodel boundary, 
the global model of Figure 15 could then be employed in the submodeling 
method developed. 

The material properties associated with the contact pad were characteristic 
of an isotropic polycrystalline material and the material properties associated 
with the contact specimen were characteristic of an anisotropic single crystal 
nickel (SNC) material. Table 2 gives a summary of the contact parameters 
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I Parameter 

I mm (in) I 1 Spherical Radius (R) 1 6.35 (0.25) 

Value unit  

Normal load ( P )  445-578 (100-130) I Newtons (lbs) I 

I Poissois Ratio ( v s x )  I 0.3995 I I 

Single Crystal Nickel Properties: 

Youngs Modulus (Esx) 108 (15.7) GPa (MPa) 

Shear Modulus (Gsx) 

Inconel Material Properties: 

Youngs Modulus ( E )  

used. These parameters reflect material properties of a common single crystal 
nickel alloy employed in aircraft engines used at greater than 600°C. The table 
also reports upper and lower bounds on the normal (P) and tangential (Q) 
loads as applied in the experiments. The cubic symmetry of SCN materials is 
characterized by three independent material constants which will be reported 
here with symbols Esx, V S X ,  and Gsx where G s x  is not a function of Esx and 
VSX as is the case with isotropic materials. Note that the reported normal and 
tangential loads in Table 2 are representative of but not exact loads applied in 
the experimental testing performed [5]. Using the given contact parameters, 
the developed submodeland stress model techniques can now be employed to 
solve for experimental contact stresses. 

110 (15.9) GPa (MPa) 

183 (26.6) GPa 

4.2 Crystal Plane Normal and Shear Stresses 

Poissons Ratio (v )  

Contact Properties: 
I 

For a SCN material, the fatigue and fracture modes are highly dependent 
on the environmental conditions and stress state. The stress state is in turn 
greatly dependent on the applied loads and the crystal orientation with respect 
to those applied loads. Recently, a testing program to investigate fretting be- 
havior of a SCN alloy took place in air at room temperature (2l.C (70OF)) and 
elevated temperature (538°C (1000°F) and 649°C (1200°F)) representative of 
temperatures seen in gas turbine engine turbomachinery [5]. The material ori- 
entations were controlled for these tests and the contact loads were recorded 
from in-situ experimental monitoring. 

0.308 
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SCN materials have a crystal structure that is face centered cubic (FCC). The 
high atomic density planes in an FCC crystal are the octahedral planes of 
which there are four. Each octahedral plane has six slip directions associated 
with them. Of the six slip directions on each plane, three are called primary 
slip (or easy slip) directions and three are called secondary slip directions. 
This results in a total of 24 slip directions (12 primary and 12 secondary slip 
directions) associated with the four octahedral planes [16]. In addition to the 
24 octahedral slip directions, there are three cube planes, each of which have 
two slip directions per face. i i i i a  g;lvt;a & I , G ~ & ~  

of 12 primary, 12 secondary and 6 cube slip directions on 4 octahedral and 3 
cube planes. 

r n - : -  L---- 4 4 1 fiC Q n  o1;n iTop+innq ,-nm?rised - -. 
urlr dAL yvI--...-I ___. 

With environmental conditions known, the obtained loads can now be used 
with the defined finite element submodel method to obtain experimental con- 
tact tractions and stresses. These stresses can then be used to solve the stress 
state for predicting fretting behavior of the SCN material. By converting the 
stresses obtained from the submodel analysis into the material coordinate 
system, it is possible to calculate the shear and normal stresses on each octa- 
hedral and cube plane using the appropriate kinematic equations. This stress 
behavior can then be related to the location of cracking identified from the 
experiments to provide insight into the active modes of crack growth in the 
specimen during fretting loading conditions. Further details describing the spe- 
cific slip planes and slip directions in an FCC crystal can be found in Stouffer 
and Dame [16]. 

It has been observed that failure on the (111) octahedral planes is governed 
by the behavior of the resolved shear stresses and not the maximum principal 
stresses [17]. However, the normal stress (mode I stress component) is thought 
to phy a, role in the failure process since the crack tip must remain open to 
allow fatigue and fracture to occur [18]. Based on these observations, the 
fretting damage observed in the experiments will be related to the calculated 
range of resolved shear stress in the ’i-th’ slip direction, Arkss, calculated as: 

where r;,, is the resolved shear stress in the ’i-th’ slip direction at the max- 
imum applied tangential load, Qmal, and rAin is the resolved shear stress in 
the ’i-th’ slip direction at the minimum applied tangential load, Qmin. Since a 
crack will not propagate on a plane experiencing a compressive (crack closing) 
normal stress, the calculated resolved shear stress ri was set to zero if the 
normal stress of its corresponding crystal plane was compressive (0; < 0) at 
the location of stress calculation. 

Although literature has commented that the crack driving force in SCN materi- 
als are the resolved shear stresses and not the crystal plane normal stresses [17], 
the normal stress range on each octahedral plane and cube plane can also be 
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calculated for completeness. Therefore, the fretting damage is also compared 
to  the normal stress range on the 'j-th' crystal plane, ACT:, calculated as: 

where oimUz is the normal stress on the 'j-th' crystal plane at the maximum 
applied tangential load, Qmuz, CTAmin is the normal stress on the 'j-th' crystal 
plane at the minimum applied tangential load, Qrnin, and 'j' identifies one 
of the seven crystal pianes of an ru, UYWCU. nsaul, oLLLbb cu 

propagate on a plane experiencing a compressive (crack closing) normal stress, 
the calculated normal stress ( c T : ~ ~ ~  or airnin) was set to  zero in equation 2 if 
the normal stress of its corresponding crystal plane was compressive (0: < 0) 
at the location of stress calculation. 

nnn - - - - - - L - l  A -A:- n;nnrr  Q n ~ o r l , -  .cn,ill nnt, ..__- -__ 

5 Correlation of Crack Location and Orientation With Stresses 

Defects or anomalies associated with intrinsic material quality (IMQ) serve 
as the source of fatigue crack initiations. The contribution and interplay of 
the operating environment, temperature, and stress condition strongly affect 
which defect species will be operative as well as the particular micromecha- 
nism by which the defect or IMQ initiates a fatigue crack. After initiation, 
the fatigue crack growth is dependent on the operative microscopic fracture 
mode [19]. Due to the complexity inherent to the two-phase microstructure 
of SCN materials, a complex set of fracture modes exist and are dependent 
on the environmental conditions, crystal orientation, temperature, and state 
of stress. TG zs;sist the relzkicn nf observed surface cracking behavior to the 
surface contact stresses, contours of the surface resolved shear stress ranges 
and associated crystal plane normal stress ranges on each slip plane were cal- 
culated using the devised submodel stress analysis. 

5.1 Surface Contact Stresses 

To investigate the surface contact stress behavior as the material orientation 
was rotated, the submodel stress analysis was employed to observe locations 
of concentrated large resolved shear stress ranges and normal stress ranges for 
each slip plane at material orientations of 0 = 0", 15", 30°, and 45O. For each 
of the submodel analyses run, the normal load (P) was held constant at the 
target experimental value of 534 Newtons (120 lbs), the tangential load (Q) 
was held constant at 89 Newtons (20 lbs), and the coefficient of friction ( p )  
was given a value of 0.3. 



Fig. 16. Contour plots showing how the loci of large resolved shear stress ranges, 
A7iSs, for primary slip direction 6 in octahedral plane 2 rotates with material 
orientation. Note stresses reported are in MPa and the reported angle on each 
contour plot refers to the material orientation angle, 0. 
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5.1.1 Resolved Shear Stress Range, 

A representative surface contour plot of resolved shear stress range showing 
loci of large stress ranges for a particular slip plane can be seen in Figure 16. 
Observing this stress behavior with rotating material orientation reveals that 
the loci of concentrated large resolved shear stress ranges rotates with the 
material orientation. This is highlighted in Figure 16 by the white dotted 
lines that rotate with the material orientation and match the rotation of the 
' - A  lULl VI L:-h lllgll -ncn Ab""! T m r l  " V U  chpar "I*--- st,rpss - -- ranges. 

Observing this behavior on each of the seven crystal planes in each slip direc- 
tion revealed areas of large resolved shear stress range locations for each slip 
direction and were mapped to the slip annulus as seen in Figures 17 and 18. 
Figure 17 shows large resolved shear stress range loci for the four octahedral 
planes, and Figure 18 shows large resolved shear stress range loci for the cubic 
planes of the FCC single crystal nickel specimens. Note that in these pictures 
the location of large resolved shear stress locations for each slip plane rotate 
with the material orientation as observed previously. 

0 = 00 - -  
0: Octahedral Plane 

= areas of concentrated 0 1  and 02  DRSS (Zone 1 & 3) 

= areas of concentrated 0 3  and 0 4  DRSS (Zone 2 & 4) 

Fig. 17. Schematic highlighting the areas along the slip annulus where the concen- 
tration of large resolved shear stress ranges, A7hSs, exist for octahedral slip planes. 

5.1.2 Crystal Plane Noma1 Stress Range, Aoi 

A representative surface contour plot of the normal stress range for a crystal 
plane showing loci of large stress ranges can be seen in Figure 19. Similar to 
the resolved shear stress behavior, observing the normal stress behavior with 
rotating material orientation reveals that the loci of concentrated large normal 
stress ranges also rotates with the material orientation. This is highlighted in 
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= areas of concentrated C1 DRSS 

= areas of concentrated C3 DRSS 

Fig. 18. Schematic highlighting the areas along the slip annulus where the concen- 
tration of large resolved shear stress ranges, AT&, exist for cubic slip planes. 

Fig. 19. Contour plots showing how the loci of large normal stress ranges, ACT;, for 
octahedral plane 2 rotates with material orientation. Note stresses reported are in 
MPa and the reported angle on each contour plot refers to the material orientation 
angle, 0. 
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Figure 19 where the white dotted lines rotate with the material orientation 
and match the rotation of the loci of high normal stress ranges. 

Observing this behavior on each plane was used to identify areas of large nor- 
mal stress range locations for each plane and were mapped to the slip annulus, 
similar to  the resolved shear stress range case. The loci of large normal stress 
ranges for the octahedral planes behave the same as in Figure 17. However) 
the loci of large normal stress ranges for the cube plane differs as illustrated 
in Figure 26. Herlce, F i g ~ x  17 SE,EJS !arge nnrmal dress range loci for the 
four octahedral planes, and Figure 20 shows large normal stress range loci for 
the cubic planes of the FCC single crystal nickel specimens. 

Note that the normal stress range values on cube plane 2 are negligible at the 
surface and therefore are not presented here. 

0 = 00 
C:  Cubic Plane 

= areas of concentrated C1 D R S S  

= areas of conceritiatecl C3 DRSS n 

Fig. 20. Schematic highlighting the areas along the slip annulus where the concen- 
tration of large normal stress ranges, AaL, exist for cubic slip planes. 

5.2 Theoretical Crack Propagation Orientations 

For the case of crystallographic propagation, cracks will propagate along one 
of the crystal planes. Depending on the orientation of the material axes of the 
crystal) the crystal planes will be oriented at different angles with respect to 
the specimen surface. Figure 21 shows the crystal material axes orientation 
with respect to the specimen when the applied tangential load and x’-axis is 
oriented with one of the crystal axes (0 = 0). Figure 21 can then be used with 
the definitions of the 30 slip directions as defined by Stouffer and Dame ([16]) 
to determine the slip planes and directions with respect to the experimental 
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Material Axis 
Orientation Angle, 8 

[OlO] is oriented with 
the 2’-axis into the page 

(b) 

Fig. 21. Schematic showing the crystal structure orientation with respect to the top 
hat specimen used in the high-frequency, high-temperature tests for case when the 
x’-axis is aligned with the [0 0 11 material axis and the y’-axis is aligned with the 
[1 0 01 material axis. 

Plane 2 y-fiooo] 

Fig. 22. Schematic showing primary slip direction orientations with respect to the 
top hat specimen used in the high-frequency, high-temperature tests for case when 
the x’-axis is aligned with the [0 0 11 material axis and the y’-axis is aligned with 
the [l 0 01 material axis. 
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Fig. 23. Schematic showing secondary slip direction orientations with respect to the 
top hat specimen used in the high-frequency, high-temperature tests for case when 
the x’-axis is aligned with the [0 0 11 material axis and the y’-axis is aligned with 
the [l 0 01 material axis. 

Fig. 24. Schematic showing cube slip direction orientations with respect to the top 
hat specimen used in the high-frequency, high-temperature tests for case when the 
x’-axis is aligned with the [0 0 11 material axis and the y’-axis is aligned with the 
[I 0 01 material axis. 
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specimens as seen in Figures 22, 23, and 24. The slip directions with respect 
to  the specimen can then be found for any arbitrary material direction, 0, by 
rotating the slip directions as displayed in Figures 22, 23, and 24 an angle 0 
about the d-axis. 

Theoretically for the crystal orientation in Figures 22, 23, and 24, crystallo- 
graphic crack propagation would result in cracks oriented according to the 
directions displayed in Figure 25 for O=O". Note that cracks propagating on 
octahecirai piaues 1 and 2 wi!! thecretica!!y he i_n_ t,hp same orientation, and 
cracks propagating on octahedral planes 3 and 4 will theoretically be in the 
same direction and 90" different than octahedral planes 1 and 2. These theoret- 
ical crack orientations also rotate with the material orientation as illustrated 
in Figure 25 for 0 = f30". 

A .  v n: Octahedral Plane 
C: Cubic Plane 

0 00 
0 0 llfxc, 

01,02 

c37, fi 
O=30° \\ x 

oi ,02 

Fig. 25. Schematic showing theoretical surface crack orientations according to slip 
plane. The octahedral planes are identified with an '0' for octahedral and the cubic 
planes are identified with a 'C' for cubic. The lines representing the plane orienta- 
tions are radially spaced evenly at 45'. 

Coupling knowledge about the peak resolved shear stress range loci with re- 
spect to the slip annulus as presented in Figures 17 and 18 with the theoretical 
crack propagation directions as displayed in Figure 25 result in predicted orien- 
tations for cracks that initiate at different locations along the annulus. Using 
these observations, the orientations of cracks observed in the experimental 
testing program can be predicted based on the observed location of the crack- 
ing. If the resolved shear stress range can be used as a valuable parameter in 
fretting contact design and analysis of single crystal nickel materials, then pre- 
diction of crystallographic crack propagation orientations should match with 
the active slip plane where it forms. 

For example, consider Figure 26. The scanning electron microscope image at 
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the far left of the figure is of the upper wear scar on specimen 53-001-06, a 
specimen with a material orientation of 0 = 0". The boxes highlight the extent 
of cracking in the slip annulus and the direction of applied tangential load, Q, 
with respect to the SEM image is indicated. Relating the observed cracking 
at the upper right of the slip annulus (R = 45") to the calculated surface 
resolved shear stress ranges reveals that the largest AT& at that location 
occurs on octahedral plane 1 in slip direction 2 (i=2) as illustrated by the 
upper contour plot in Figure 26. This suggests that  the crack will form and 

can then be used to predict the expected crack orientation. The predicted 
crack propagation orientation and the actual crack orientation can be seen in 
the upper right SEM micrograph of Figure 26. Relating the observed cracking 
at the bottom left of the slip annulus (R = -135") to the calculated surface 
resolved shear stress ranges reveals that the largest AT& at that location 
occurs on octahedral plane 2 in slip direction 6 (i=6) illustrated by the lower 
contour plot in Figure 26. This suggests that  the crack will form and propagate 
along the second octahedral plane. Figure 25 can then be used to  predict the 
expected crack orientation. Again, the predicted crack propagation orientation 
and the actual crack orientation can be seen in the lower right SEM micrograph 
of Figure 26. 

v:-....- C)F propagate along the first octahedrai piane (piane i of Figure ??). I l g u L C  L U  

The same prediction scheme can be performed using information about the 
loci of normal stress ranges. Figure 27 shows that the normal stress ranges 
predict the same location and orientation behavior for the experimentally 
observed cracks as the resolved shear stress ranges predicted in Figure 26. It 
is important to note that the peak normal stress ranges suggest that cracking 
should occur at the edge of contact. However, the majority of the cracking 
behavior observed experimentally showed cracks to initiate and grow within 
the siip annulus as predicted by- the r e ~ o l ~ ~ d  shear stress ranges. Figures 26 and 
27 illustrate the process that was performed for each wear scar investigated. 
A comparison of the observed and predicted crack locations and orientations 
for each test are presented in Table 3. 
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Table 3 
Comparison of predicted and observed crystallographic crack locations and orien- 
tations for performed room-temperature high-frequency fretting tests. The propa- 
gation planes are identified with an '0' for octahedral and a 'C' for cubic. Note 
that the material orientation of t h e  high Leq~er~ t i i r e  specimens is u~Jcnc:5.n; there- 
fore, no comments on crack propagation plane can be made without first identifying 

' Test 

ID. 

HFRT005 

HFRTOOG 

n 
Observed Actual Actual Predicted Predicted 

Spec Location Orientation Propagation Orientation Propagation 

ID. fl(deg) Qc(ded Plane QC (del?) Plane 

J3-30D-01 0 101 01 or 0 2  105 01 or 0 2  

53-30D-02 90 80 0 3  or 0 4  165 01 or 0 2  

180 77 to 83 0 3  or 0 4  75 0 3  or 0 4  

53-30D-02 -105 165 to 172 01 or 0 2  165 01 or 0 2  

90 172 01 or 0 2  165 01 or 0 2  

180 84 to 85 03 or 0 4  75 0 3  or 0 4  

I 53-30D-02 

HFRT008 53-30D-03 

53-30D-04 

~~ 

-90 I 168 to 171 I 01 or 02 1 6 5 1  01 or 0 2  

180 75 03 or 0 4  75 0 3  or 0 4  

-90 145 c1 15 0 3  or 0 4  

I 

53-30D-04 

90 

0 

180 

-90 

8 0 3  or 0 4  15 0 3  or 0 4  

73 to 75 03 or 0 4  75 0 3  or 0 4  

83 03 or 0 4  75 0 3  or 0 4  

4 03 or 0 4  15 0 3  or 0 4  

HFRTOll 

HFRTOl2 

HFRT013 

HFHT005 

1 96 to 99 01 or 0 2  105 01 or 0 2  

180 102 to 103 01 or 0 2  1 105 I 01 or 0 2  

53-001-06 135 45 03 or 0 4  45 0 3  or 0 4  

-135 130 01 or 0 2  135 01 or 0 2  

53-001-05 -60 56 03 or 0 4  45 0 3  or 0 4  

53-001-06 -135 132 0 1  or 0 2  135 01 or 0 2  

53-001-06 30 135 01 or 0 2  135 01 or 0 2  

O I  

-135 128 01 or 0 2  135 01or02  I 
J3-30D-05 -45 70 ?? ?? ?? 

30 

0 

0 

30 

79 ?? ?? ?? 

97 ?? ?? ?? 

104 ?? ?? ?? 



6 Conclusions 

A companion numerical submodeling technique for capturing the contact trac- 
tion and near-surface stress behavior for the experimental contact has been de- 
veloped. The devised submodel analysis was used to calculate surface stresses 
of the FCC single crystal for a range of representative experimental loading 
conditions. Comparison of the surface stresses to the observed experimental 
cracking behavior resulted in the foiiowmg conciusions and observaiiuiis. 

0 Material orientation can significantly affect the contact stresses. 
0 Knowledge of the resolved shear stress and normal stress magnitudes asso- 

ciated with the four octahedral and cube slip planes can aid in predicting 
where cracking will occur. 

0 Knowledge of the resolved shear stress and normal stress behavior for each 
of the four FCC single crystal octahedral planes and three cubic planes can 
aid the prediction of crystallographic crack orientation. 

0 A vast majority of experimentally observed crystallographic cracking at 
room temperature seems to occur on one of the four FCC single crystal 
octahedral planes. 

Although the conclusions support the use of the resolved shear stresses and 
normal stresses in capturing the qualitative behavior of fretting in SCN mate- 
rials, better knowledge of the actual coefficient of friction and increased mesh 
resolution near the edge-of-contact and stick/slip boundary of the contact are 
needed before quantitative comparisons can be made. Future experimental 
work could include performing a set of friction tests capable of capturing the 
room temperature and elevated temperature friction behavior for the contact 
investigated. Other experimental work is currently underway to characterize 
the fretting fatigue performance of the SCN material a t  an elevated temper- 
ature of 650°C. The material orientations for the elevated temperature test 
specimens need to be determined by an appropriate technique in order to re- 
late observed cracking behavior to the corresponding crystal planes. Future 
modeling work could include investigating the effect of plasticity with better 
knowledge of the SCN material behavior. Using a sufficiently powerful com- 
puting platform to achieve an adequate mesh resolution at the edge-of-contact 
and stick/slip interface would also allow estimation of stresses at observed 
crack locations. With knowledge of these stresses and the crack geometry as 
obtained from a scanning electron microscope investigation of a fretted speci- 
men subjected to a break-open test, an estimate for a fretting crack threshold 
intensity factor could then be calculated. Finally, the results showed that the 
resolved shear stresses and normal stresses for each crystal plane provided in- 
sight as to where and at what orientation cracking would occur. This suggests 
the development of a damage parameter that includes contributions from both 
resolved shear stresses and normal stresses for each crystal plane. 

31 



References 

[l] H. Murthy, G. Harish, T. N. Farris, Efficient modeling of fretting of blade/disk 
contacts including load history effects, Journal of Tribology (2004) in press. 

[2] C. Ruiz, P. H. B. Boddington, K. C. Chen, An investigation of fatigue and 
fretting in a dovetail joint, Experimental Mechanics 126 (1984) 56-64. 

i3j 3. hi. Eobromirski, 'v'aria'ules d I'raiiirig puc;ess. Are there 56 of them?, in: 
M. H. Attia, R. B. Waterhouse (Eds.), Standardization of Fretting Fatigue: 
Test Methods and Equipment, ASTM STP 1159, American Society of Testing 
and Materials, Philadelphia, PA, 1992, pp. 69-84. 

[4] J. F. Matlik, High-temperature, high-frequency fretting fatigue of a single 
crystal nickel alloy, Ph.D. thesis, Purdue University, School of Aeronautics 
and Astronautics, 315 North Grant Street, West Lafayette, IN 47907-2023 
(December 2004). 

[5] J. Matlik, T. Farris, F. Haake, High-frequency, high-temperature fretting, Wear 
??? (2005) ??? 

[6] R. B. Waterhouse, Fretting fatigue, International Materids Reviews 37 (1992) 
77-96. 

[7] M. P. Szolwinski, T. N. Farris, Mechanics of fretting fatigue crack formation, 
Wear 198 (1996) 193-107. 

[8] D. A. Hills, D. Nowell, Mechanics of Fretting Fatigue, Kluwer Academic 
Publishers, Netherlands, 1994. 

[9] T. N. Farris, H. Murthy, J. F. Matlik, Fretting fatigue, in: R. 0. Ritchie, 
Y.  Murakami (Eds.), Comprehensive Structurai integrity: Fracture of Materials 
from Nan0 to Macro, Vol. 4, Elsevier Science, 2003. 

[lo] N. G. Cormier, B. S. Smallwood, G. B. Sinclair, G. Meda, Aggressive 
submodelling of stress concentrations, International Journal for Numerical 
Methods in Engineering 46 (1999) 889-909. 

[Ill G. B. Sinclair, N. G. Cormier, J. H. Griffin, G. Meda, Contact stresses in dovetail 
attachments: Finite element modeling, Journal of Engineering for Gas Turbines 
and Power 124 (2002) 182-189. 

[12] J. R. Beisheim, G. B. Sinclair, On the three-dimensional finite element analysis 
of dovetail attachments, Journal of Turbomachinery 125 (2003) 372-379. 

[13] D. A. Hills, D. Nowell, A. Sackfield, Mechanics of Elastic Contacts, Butterworth- 
Heinemann, Oxford, Great Britain, 1993. 

[14] R. L. Munisamy, D. A. Hills, D. Nowell, Static axisyrnmetric hertzian contacts 
subject to shearing forces, Journal of Applied Mechanics 61 (1994) 278-283. 

32 



[15] P. T. Rajeev, T. N. Farris, Numerical analysis of fretting contacts of dissimilar 
isotropic and anisotropic materials, Journal of Strain Analysis for Engineering 
Design 37 (6) (2002) 503-518. 

[16] D. Stouffer, L. Dame, Inelastic Deformation of Metals: Models, Mechanical 
Properties, and Metallurgy, John Wiley & Sons, 1996. 

[17] J. Telesman, L. Ghosn, The unusual near threshold fcg behavior of a single 
crystal superalloy and the resolved shear stress as the crack driving force, 
Engineering Fract,iire Mechanics 34 (5,/6) (1989) 1183-1196. 

[18] G. R. Swanson, N. K. Arakere, Effect of crystal orientation on analysis of single- 
crystal, nickel-based turbine blade superalloys, Tech. Rep. NASA/TP-2000- 
210074, National Aeronautics and Space Administration (NASA), Marshall 
Space Flight Center (MSFC), Alabama (February 2000). . 

[19] D. DeLuca, C. Annis, Fatigue in single crystal nickel superalloys, Office of Naval 
Research, Department of the Navy FR-23800. 

33 

A 


